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Abstract. This paper proposes a method for the integration of natural language 

understanding in image classification to improve classification accuracy by 

making use of associated metadata. Traditionally, only image features have 

been used in the classification process; however, metadata accompanies images 

from many sources. This study implemented a multi-modal image classification 

model that combines convolutional methods with natural language 

understanding of descriptions, titles, and tags to improve image classification. 

The novelty of this approach was to learn from additional external features 

associated with the images using natural language understanding with transfer 

learning. It was found that the combination of ResNet-50 image feature 

extraction and Universal Sentence Encoder embeddings yielded a Top 5 error 

rate of XX% and Top 1 error rate of XX%, which is an improvement of XX on 

state-of-the-art results. This suggests external features should be used to aid 

image classification when external features are available. 

1   Introduction 

The performance of image classification methods has improved dramatically over the 

past decade, primarily due to advances in deep learning. Progress in the realm of 

computer vision has centered on deepening models (more layers) (He et al. 2015). 

More efficient architectures have made better use of the spatial characteristics of 

images (Simonyan et al., 2014; Szegedy et al, 2014). Ioffe and Szegedy (2015) 

introduced statistical methods to take advantage of the distribution of values within 

convolutional layers.   

  In parallel, Natural Language Understanding (NLU) has seen considerable 

advancement with the emergence of large corpora, models that retain sequence 

information over larger spans of text, and methods that leverage deeper lexical and 

semantic representations (Cer et al., 2018; Tai et al. 2015). Language learning models 

have evolved from the analysis of co-occurrences of words to word embeddings based 

on positional information gained through the analysis of encyclopedic volumes of 

corpora (Mikolov et al., 2013). Sequence models, such as recurrent neural networks 

(RNN) (Cleeremans et al., 1989) were used to extract syntactic information from 

word embedding sequences. Sequence models were improved by increasing model 

memory with long short-term memory (LSTM) (Hochreiter et al., 1997) networks, 

which combined multiple weights and activations to add a cell state capable of 

carrying forward more context. The current state of the art involves attention 
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mechanisms (Bahdanau et al., 2014; Vaswani et al., 2017), which is all that is needed 

to both encode and decode long- term contextual relationships between sequences of 

words.  

  To a large extent, these two fields have developed separately with image processing 

leveraging deep convolutional networks (Krizhevsky et al., 2012) and NLU using 

deep sequence-based networks (Tai et al. 2015). However, with high quality, 

transferable models for image data and text data, interest in multi-modal deep learning 

(learning joint deep representations from disparate types of data) has increased. 

Recent studies indicate that deep representations of image data and text data 

learned from exceptionally large datasets are transferable to new datasets 

(Goodfellow et al., 2017). Interest in multi-modal learning in the context of images 

and text has focused applications of joint representations and self-supervised training. 

Applications of joint image and text representations have been related to embedding 

images into a semantic text vector space or inferring text embeddings from a visual 

vector space. Embedding images into the semantic text vector space improves search-

and-retrieval of images (Petal et al., 2018). Similarly, embedding text into the visual 

vector space has been shown to improve image caption generation (Frome et al., 

2013). These experiments in joint representation learning indicate a strong 

relationship between these two modes of data. Self-supervised learning in this area 

has typically focused on learning to classify images from noisy labels. Li and 

associates (2017) showed that images from the web could be classified using web 

metadata. Noting the strong relationship between text representations and image 

representations, this study focused on leveraging joint representations of image and 

text to augment classification tasks.  

Traditionally, image classification models have exclusively used features extracted 

from images only. While this is a reasonable approach for many tasks where images 

are provided in isolation, in many cases such as the web, images are accompanied 

with metadata. This raises a natural question: Can image classification tasks be 

improved by using associated contextual data?  

This paper presents an architecture1 for learning deep representations of images 

and text and shows that multi-model learning can be used to enhance image 

classification. To combine feature extraction from images and text, this model 

provides input for images and an input for associated metadata text. The images and 

text are initially processed in parallel towers of deep convolutional and sequence 

networks, respectively. The initial layers extract features specific to the data type. 

These features are flattened and concatenated into a single feature vector, grouping 

image features and text features separately. Finally, a Dense Neural Network (DNN) 

predicts the image class from the combined feature vector. 

This paper presents a set of comprehensive experiments with this model 

architecture on the WebVision dataset (Li et al., 2017) to show how metadata 

inclusion affects image classification performance. The model presented in this paper 

provides a performance of XX% Top 5 accuracy, which is an increase of X over the 

baseline state-of-the-art model provided with WebVision.  

 
1 Code is available at https://github.com/WebVision-Capstone/WebVision-Cap 



 

 

2   Related Work 

Two concepts are fundamental to this study: image classification and natural language 

understanding. Since the success of AlexNet in 2012 (Krizhevsky et al., 2012), the 

application of convolutional neural network models in image processing have been a 

dominant area of research. Similarly, sequence neural network models have 

dominated recent research in NLU. This study combines these two areas of research, 

focusing on improving image classification models with joint learned representations 

with text. In addition, exceptionally large models are required to train modern neural 

network models. Datasets for image classification and the fundamentals of 

convolutional image classification models and sequence NLU models are described in 

the following sections. 

2.1   Image Classification Datasets  

  The ImageNet dataset is the main source for training high quality image 

classification models (Deng et al., 2009). Since the project’s inception, 14 million 

images have been labeled and added to the ImageNet dataset (Deng et al., 2009) 

compared to the billions of images uploaded to the internet each day. One of the 

greatest contributions to ImageNet’s accuracy, and the time it takes to update the 

dataset, was the quality control process. Image labeling and the evaluation label 

accuracy was crowd sourced with Amazon’s Mechanical Turk 2 . The labeling 

precision of 80 randomly sampled classes of the original ImageNet DET dataset 

yielded an average of 99.7% accuracy (Deng et al., 2009). This suggested it was a 

reliable source of high-quality data, which justified the cost to build the dataset. 

  The creators of the WebVision dataset showed that accurate image classification 

can be achieved using noisy images and the associated metadata taken directly from 

web searches (Li et al., 2017). The WebVision 2 dataset3 contains over 16 million 

images and their metadata, such as descriptions, titles, and tags (Li et al., 2017). The 

classification accuracy of models trained on the WebVision dataset offer comparable 

accuracy, and in some cases higher accuracy, to models trained using ImageNet, 

despite the presence of noise within the data. The creators of WebVision found that 

models that learn from web data differ from curated datasets in that they learned from 

the wide array of human annotations and captured the linguistic complexities of 

language more readily from metadata. Comparisons of models trained on WebVision 

to models trained on ImageNet showed the role that quantity can play in the accuracy 

of a model, despite the presence of noise. 

  The class labels of image datasets are based on a database of English words known 

as WordNet (Miller,1995). WordNet is organized in a hierarchy from general 

concepts to specific concepts (Miller,1995). Small sets of similar words from 

WordNet were grouped together into synonym sets, which are often referred to as 

 
2 A marketplace for outsourcing virtual work; see https://www.mturk.com/ 
3 https://data.vision.ee.ethz.ch/cvl/webvision/dataset2018.html 



 

 

“synsets” in the literature. Approximately 21,000 synsets4 are used as class labels in 

ImageNet. The WebVision dataset is based on only 5000 of the synsets used to 

construct ImageNet (Li et al., 2017). 

 

2.2   Image Classification with Convolutional Neural Networks 

In recent years, the use of CNNs led to significant progress in image classification 

tasks. This type of network is built from a set of layers designed to extract the salient 

spatial features within images. Early forms of CNNs like LeNet-5 (LeCun et al., 

1989), essentially stacked pairs of two types of layers – 2D convolution and pooling. 

Convolutional layers are made of a set of square filters. Each filter is convolved over 

the input image, producing a smaller intermediate output image. Pooling layers down-

sample the output images by splitting the input images into a square matrix and 

passing forward the maximum value or average value. 

  Two problems arise from deep stacks of these two types of layers. First, it is 

difficult to train very deep networks of this type because the gradient diminishes too 

rapidly during backpropagation, preventing the successful training of the most outer 

layers (Bengio et al, 1994). This is often called the vanishing gradient problem in the 

literature. Second, large networks are computationally expensive. In CNNs, the 

computational expense increases quadratically with a uniform increase in network 

size (Szegedy et al., 2014). Residual Networks (ResNet) proposed by He and 

associates (2015) were designed to mitigate the vanishing gradient problem. Inception 

networks were designed to improve the efficiency of convolutional layers by 

introducing sparsity into the convolutions (Szegedy et al., 2014). 

  This study employed both ResNet50V2 and Inception V3 as the CNN architectures 

for image classification. Additionally, transfer learning was exploited by using pre-

trained weights for these models5 (pretrained on ImageNet). ResNets, Inception 

layers, and transfer learning are described in the following sections. 

ResNets. ResNets were designed to mitigate gradient loss in very deep convolutional 

neural networks. The central idea behind ResNet is the addition of an identity 

connection – a layer that skips one or more convolutional layers, passing the state of 

the previous layer around the convolution layer and summing with the output of the 

convolutional layer (He at al., 2015). With the addition of the identity mapping 

between sets of convolutional layers, the model learns residual mappings rather than 

learning the entire functional mapping. It was hypothesized by the authors and others 

that a residual mapping may be easier to learn than the total mapping (He at al., 2015; 

Veit et al., 2016). In the conceptional ResNet module shown in figure 1a, the input 

 
4 http://imagenet.stanford.edu/about-overview 
5 The pre-trained weights for many of these state-of-the-art classification models are made 

available in neural network programming frameworks such as TensorFlow (Abadi et. al, 

2016). TensorFlow is a programming framework for neural network model development and 

deployment. See https://www.tensorflow.org/. 



 

 

(X) is passed through a two-layer path (approximating F(X)) and a skip connection 

path. The outputs of the two paths are summed at the output of the ResNet. Feeding 

the identity of the input forward (by the skip connection), mitigates the vanishing 

gradient problem in very deep networks. The ResNet shown in figure 1b, which was 

used in ResNet-110 and ResNet-164 (He et al. 2016), is a more typical application of 

a ResNet module. 

 

 

Fig. 1. ResNet building blocks. A conceptual ResNet module is shown in (a). A typical ResNet 

module is shown in (b). 

Inception. Inception networks 6  were designed to improve the efficiency of 

convolutional layers by introducing sparsity into the convolutions. The inception 

architecture is based on the idea that the output of a given layer should be constructed 

so that correlated outputs are grouped together, which was suggested by Arora and 

associates (2013). The authors surmised that there should be clusters that are tightly 

packed as well as larger, more spread out clusters (Szegedy et al. 2014). The inception 

layer addresses this by performing three separate sets of convolutions with different 

sizes over the input and concatenating the resulting sets of filters as the output. The 

inception layers were used in place of the typical convolutional and pooling layers in 

the Inception V1 (GoogLeNet) model architecture. The layout of the original 

inception module is shown in figure 2. The primary sections of the module framed 

 
6 Inception networks are sometimes referred to as GoogLeNets in the literature, which comes 

from the author’s team name in the ImageNet Large-Scale Visual Recognition Challenge 

2014 (ILSVRC14) competition (Szegedy et al., 2014). 



 

 

with solid borders. These primary layers perform feature extractions with three 

window sizes, 1x1, 3x3, and 5x5, to extract features of multiple sizes from the input 

images. The resulting tensors are concatenated together and passed to the next 

inception model. The 1x1 convolutional layers framed with dashed lines were inserted 

for dimensionality reduction. There have been several improvements to the original 

Inception architecture with ResNets added most recently in Inception V4 (Szegedy et 

al. 2016). 

 

Fig. 2. Layout of Inception module from Inception V1 (GoogLeNet) 

Transfer Learning on Images. The concept of transfer learning can be understood as 

applying a learner trained on a given task to a new task. In the context of deep 

learning, the representations learned in the initial layers from a task T1 may 

generalize to another task T2; thus, allowing the learner to be trained for T2 using 

very few examples (Goodfellow et al., 2017b). Yosinski and associates (2014) found 

that representations learned from training a CNN on images associated with nature 

related synsets could be applied to classifying images associated with man-made 

related synsets with little training. This suggests that features learned by features 

learned in the early convolutional layers have similar distributions to features that 

would have been learned from other images. 

  In practice, transfer learning on images is typically accomplished by replacing the 

last few layers (nearest the output) with layers for the specific problem (Pointer, 

2019). This can be as simple as changing the output layer if the number of classes in 

the new task is different. Once the new layers are added, only the new layers of the 



 

 

model are trained for the new task, which decreases training time and the number of 

required training examples substantially (Pointer, 2019). 

2.3   Natural Language Understanding 

Natural Language Understanding (NLU) is the subset of Natural Language Processing 

- the other subset being Natural Language Generation - that deals with understanding 

input syntax, semantics, pragmatics, and discourse (Bates, 1995). Traditionally, this 

topic has been approached through statistical methods. However, deep learning has 

risen to the forefront of NLU, which relies on natural language embedded into 

numeric vectors that can be used for natural language processing tasks with sequence 

models and transformer models (Cer et al, 2018). Methods for word embeddings, 

NLU sequence modeling, and transfer learning are discussed in the following 

sections. 

Word2Vec. The Word2Vec model is a two-layer neural network that was created to 

encode and embed words into numeric vectors that can be used for arithmetic 

operation. Word2Vec operates on two basic models: the Continuous Bag-of-Words 

(CBOW) and the Continuous Skip-Gram. The CBOW model uses a continuous, 

distributed representation of the verbal context to predict the value of the current word 

while the Continuous Skip-Gram model predicts the verbal context using the current 

word (Mikolov et al, 2013). 

GloVe. The Global Vectors (GloVe) model embeds words into distributed, numeric 

vectors useful for arithmetic operation. The word vectors are then processed into a 

global, log-bilinear regression model to leverage global matrix factorization and local 

context window methods (Pennington et al, 2014). Distances between words in co-

occurrence matrices create word vector spaces that enable regression tasks to be 

applied to non-zero values therein. 

Sequence Neural Network Models for NLU. The previous NLU methods are only 

vector representations of words or documents. While these types of representations 

encode lexical and semantic properties, the syntactic properties are generally not 

encoded by these methods. Sequence neural network models7 are used to extract 

syntactic information from sequences of word vectors (Goodfellow et al., 2017a), 

which are fundamental to the primary NLU models used in this study.  

  The most basic type of sequence model is the unidirectional sequence model 

(shown in figure 3a). In this type of model, word vectors are sequentially 

concatenated with a learned hidden state and passed through a layer generating a new 

hidden state (Goodfellow et al., 2017a). This process is continued recursively until the 

end of the vector sequence. Depending on the use case, the output of the model is the 

 
7 Common sequence neural network models used in practice are the recurrent neural network 

(RNN) cell (Cleeremans et al., 1989) and the long-shot term memory (LSTM) cell 

(Hochreiter et al., 1997). 



 

 

last hidden state vector (single vector representation) or the series of hidden state 

vectors (sequence vector representation). The single vector representation is often 

used in NLU applications such as sentence classification and sentiment analysis.  

  In contrast, the sequence vector representation is often used in tasks such as tagging 

words within sentences with parts of speech. The primary weakness of the 

unidirectional sequence model is that contextual learnings are only carried in one 

direction (typically forward). This directional learning means that less learned context 

is available at the start of sentences and more learned context is available at the end of 

sentences (Goodfellow et al., 2017a). 

  The bidirectional sequence models were created to mitigate the unbalanced context 

learning of unidirectional models. A bidirectional sequence model is essentially two 

unidirectional models where the word vector input sequence is reversed in one of the 

unidirectional models (Goodfellow et al., 2017a). Like the unidirectional model, the 

sequence vector representation or the single vector can be used as the model output. 

However, the output of a bidirectional sequence model is the concatenation of the 

outputs of the individual (forward and backward) sequence models (Goodfellow et al., 

2017a).  

 

Fig. 3. Unidirectional sequence model 

  An additional sequence model is the encoder-decoder (shown in figure 4). This 

type of model is used to transform one type of sequence into another type of 

sequence, such as in language translation. An encoder-decoder consists of two parts: 

an encoder and a decoder. Either type of sequence model discussed previously can be 

used as the encoder (a unidirectional encoder is shown in figure 4), which encodes the 

entire sequence into a single vector representation (Sutskever et al., 2014). This single 

vector is passed to a decoder that autoregressively generates a new vector sequence 

from an internal hidden state and a start vector until an end vector is produced 

(Sutskever et al., 2014). The start and end vectors are learned representations 

designed as signals to the neural network where a sentence starts and ends, 

respectively. 



 

 

 

Fig. 4. An encoder-decoder sequence model with a unidirectional input sequence model and an 

attention mechanism. 

 

  The encoder-decoder sequence model had two main weaknesses: model 

performance drops off with longer sequences and sequence-based neural networks are 

expensive to train because training cannot be parallelized. These two weaknesses 

were addressed with attention and positional encoding. First, attention is a mechanism 

by which a neural network can leverage various parts of the input sequence while 

decoding the sequence (Bahdanau et al., 2014; Vaswani et al., 2017). In practice, 

attention substantially reduces sequence decoding error in long sequences (Bahdanau 

et al., 2014). Second, positional encodings eliminate the need to feed a sequence to 

the neural network, which enables parallelism of the input data (Vaswani et al., 2017). 

These two concepts are the main building blocks that make up the Transformer 

architecture, which is the basis of the Universal Sentence Encoder (USE) and 

Bidirectional Encoder Representations from Transformers (BERT). 

Universal Sentence Encoder. As mentioned in Section 2.2, transfer learning is a 

practice whereby quasi-collinearity between at least two distributions enables a 

pipeline for information sharing from one distribution into the next. The Universal 

Sentence Encoder8 (USE) is applied to encode sentences into embedding vectors that 

can then be used for transfer learning. There are two models used for USE tasks: the 

 
8 USE model extracted from https://tfhub.dev/google/universal-sentence-encoder/4 



 

 

Transformer model (Vaswani et al., 2017) – producing higher quality – and the Deep 

Averaging Network (DAN) (Iyyer et al., 2015) – providing shorter computation time. 

  The transformer-based approach constructs sentence embeddings using encoding 

sub-graphs, which compute context-aware representations of words in sentences (Cer 

et al, 2018). In a DAN, input embeddings for words and bigrams are averaged 

together then passed into a feed-forward Deep Neural Network (DNN), which 

produces sentence embeddings (Cer et al, 2018). Further processing for classification 

tasks following vector embedding with either the transformer-based approach or the 

DAN approach can be carried out within a DNN. 

 

Bidirectional Encoder Representations from Transformers. BERT9 is designed as 

a pre-trained sentence encoder. BERT is a deep bidirectional representation from 

unlabeled text which jointly conditions on both left and right context in all layers 

(Devlin et al., 2018). Fine-tuning can occur on the BERT model by adding one 

additional output layer to create models for a wide range of tasks. This project uses 

the transformer’s attention mechanism to learn contextual relationships. Transformer 

consists of an encoder to read the text input and a decoder to produce a prediction for 

the task. BERT's goal is to generate a language model, and it only needs the encoder 

part. A series of tokens are the input for the BERT encoder, which are first converted 

into vectors and processed in the neural network. BERT adds metadata before it starts 

processing (Devlin et al., 2018). 

  The BERT architecture involves the preprocessing of text and the insertion of 

additional positional tokens. These tokens mark the beginning and end of paired 

sentences. Pairing sentences permits a greater contextual learning and ties sentences 

together. [CLS] tokens indicate the beginning of the first sentence, and [SEP] tokens 

separate the two sentences. Segment embeddings contain semantic data relating to the 

meaning of a phrase within a sentence, which lead to a deeper comparison of the 

relationships between phrases in addition to individual words. Positional information 

is also captured by BERT encoders. Positional embeddings capture the co-occurrence 

of word sequences within sentence pairs. This type of information contextualizes the 

word embeddings. 

  Training of BERT is accomplished with two separate strategies. Masked LM 

(MLM) strategy places a mask over 15% of the word tokens (Devlin et al., 2018). The 

model then attempts to predict the original value of the mask. Next Sentence 

Prediction (NSP) strategy the model receives pairs of sentences as input and learns to 

predict if the second sentence in the pair is the subsequent sentence in the original 

document. 

 

2.4   Multi-Modal Modeling 

Multi-Modal Modeling of images and text combines semantic knowledge extracted 

from text with knowledge of spatial structures extracted from images. Models of this 

 
9 BERT model extracted from https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1 



 

 

type learn joint representations of images and text. These joint representations have 

been used to relate images and text to improve search-and-retrieval, classification, and 

self-supervised learning. Additionally, training data from the web has been shown to 

yield more generalizable models. This study was focused on using multi-modal data 

to augment image classification tasks. 

Self-Supervised Learning. As an alternative to fully human-supervised algorithms, 

recently, there has recently been a growing interest in self-supervised or naturally-

supervised. These approaches make use of non-visual signals, intrinsically correlated 

to images, as a form of supervision for visual feature learning (Gomez et al., 2019). 

The prevalence of websites with images and loosely-related human annotations 

provide a natural opportunity for self-supervised learning. This differs from previous 

image-text embedding methods in that the goal is to learn generic and discriminative 

features in a self-supervised fashion without making use of any annotated dataset 

(Gomez et al., 2018). 

Generalizability of Learnings From the Web. Research has lately focused on joint 

image and text embeddings. Merging different kinds of data has motivated the 

possibilities of learning together from different kinds of data, which put more focus 

on the field of study where both general and applied research has been done. A Deep 

Visual-Semantic Embedding Model (DeViSE) (Frome et al., 2013) proposes a 

pipeline that, instead of learning to predict ImageNet classes, learns to infer the 

Word2Vec (Mikolov et al., 2013) representations of their labels. By exploiting 

distributional semantics of a text corpus of every word associated with an image 

provides inferences of previously unseen concepts in the training set. Semantically 

relevant predictions make this model valuable even when it makes errors. These 

errors are generalized to a class outside the labeled training set (Patel et al., 2018; 

Gomez et al., 2019). 

Generic Visual-Linguistic Representation Learning. Advancements in transferable 

vision models and transferable language models have led to the development of 

architectures for learning generic representations of images and text. Two such 

architectures are VisualBERT (Li et al., 2019) and Visual-Linguistic BERT (VL-

BERT) (Su et al., 2019). VisualBERT (Li et al., 2019) is a transformer-based model 

(Vaswani et al., 2017) that integrates BERT (Devlin et al., 2018) with object detection 

models and self-attention to associate parts of input images to parts of input text. The 

attention mechanism allows VisualBERT (Li et al., 2019) to learn generic joint 

representations that are transferable between visual-linguistic tasks such as captioning 

an image. Similarity, VL-BERT is a transformer-based model (Vaswani et al., 2017) 

that relates embedded features of input text and images with an attention mechanism 

(Su et al., 2019). This use of attention enables the input vectors to aggregrate useful 

infromation from other sections of the input sequences (Su et al., 2019). 



 

 

3   Methods 

The WebVision dataset (Li et al., 2017) is a collection of images with associated web 

metadata. This study adopted an ensemble modeling approach to make use of the 

multi-modal nature of the WebVision dataset (Li et al., 2017) to improve 

classification results. The following sections provide insight into the processes 

guiding the formation of the multi-modal model’s architecture. 

3.1   WebVision Data 

This study intentionally uses noisy images and text from the WebVision training set 

and its associated metadata, while excluding the cleaner validation data. This 

omission serves the intent to evaluate the utility of state-of-the-art NLP tools, USE 

and BERT. Additionally, validating the model with images and metadata that share a 

similar noise distribution to the training data provides a better assessment of model 

performance on loosely supervised data. Validation and test sets were created by 

randomly sampling 4% of the training data on a per class basis and splitting the 

sampled data into two equally sized sets. This sampling methodology maintains the 

noise distribution and class imbalance for each set of data, training, validation, and 

test. 

  The WebVision dataset is composed of 14 million images and metadata collected 

from Flickr10 and Google Image Search11 based on queries developed from the 

ImageNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC12) synsets (Li 

et al., 2017). The metadata provided with the images consists of titles and descriptions 

(Flickr also provided hashtags). Two example images with associated metadata are 

shown in figure 5. The synset label for the top image in figure 5 is “black-backed gull, 

great black-backed gull, cob, Larus marinus.” Notably, the synset is well captured by 

the image description, but the image title appears devoid of directly useful 

information. The synset label for the bottom image in figure 5 is “trestle bridge.” In 

this case, the target synset appears in both the title and description, but with many 

other words. The other words in the titles and descriptions essentially add noise to the 

data. 

  Only minimal preprocessing was applied to the data. Images were transformed 

from original sizes to 300x300 frames with 3 color channels. Additionally, the image 

tensor values were scaled to be bounded between 0 and 1. Since the USE does not 

require text preprocessing, no preprocessing steps were performed on the text in 

model variants incorporating the USE for text vectorization. However, text 

tokenization12 was performed on the input text for model variants utilizing BERT. 

 
10 https://www.flickr.com/ 
11 https://images.google.com/ 
12 BERT tokenizer:  

https://github.com/tensorflow/models/blob/master/official/nlp/bert/tokenization.py 



 

 

 

Fig. 5. Example images and metadata from synset n02041875 (top) and synset n04479939 

(bottom) 

3.2   Exploratory Analysis 

Since the WebVision data was provided without cleaning, elements of noise and 

missing instances were expected. The amount of missing metadata is shown in table 

1. A significant amount of metadata for the Flickr images is missing. It was expected 

that the model would learn to ignore missing data and only use the image for 

classification. 

Table 1.  Missing metadata attributes.  

Source Metadata Attribute Total Missing 
Missing 

Percentage 

Flicker 
Descriptions 2,647007 34.3 % 

Titles 86,417 1.1 % 

Google 
Descriptions 660,331 7.9 % 

Titles 0 0.0 % 

  As mentioned in section 3.1, the WebVision dataset was collected in a unsupervised 

manner from Flickr and Google Images. This unsupervised data collection can lead to 

significant noise in the collected data. A synset affected by collection noise is shown 

in figure 6. The synset shown in figure 6 is flash camera (n03358726), which is 

captured by example (a). The other four examples in figure 6 (b-e) are common 

modes of noise that appear in images collected for this synset. These images were 

collected by this synset query because properties of the cameras used to produce these 

image were listed in the associated metadata. 



 

 

 

Fig. 6. Examples of noise modes in synset n03358726 (flash camera). Only one image (a) is 

correctly sorted into this synset. The other examples (b-d) are sorted into this synset but are not 

correctly labeled. 

  The BERT and USE layers transform text into vectors of size 768 and 512, 

respectively. These vector representations were transformed into a two-dimensional 

space using t-distributed Stochastic Neighbor Embedding 13  (t-SNE) for visual 

inspection of class separation (Kornblith et al., 2019; Pedregosa et al., 2011). The t-
SNE embedding of the USE representations of descriptions and titles of 10 classes 

(selected at random from 5000 possibilities) are shown in figure 7 (top). Overall, the 

vectors do not appear to be well separated; however, the descriptions show more 

separation than the titles. The vector representations generated from BERT showed 

similar characteristics. Since fine-tuning BERT or the USE was not possible on the 

available hardware, an additional DNN layer was added between the output of the text 

vectorizer and concatenation to the image vector to provide pseudo-model tuning. The 

t-SNE of the learned representation after the DNN tuning layer showed better 

separation between the classes as shown in figure 7 (bottom). 

 

 
13 t-SNE was performed using the implementation provided in Scikit-Learn:  

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html 



 

 

 

Fig. 7. Two-dimensional t-SNE embeddings of USE representations of metadata (top) and USE 

representations of metadata with a tuning DNN layer (bottom). 

3.3   Model Development 

This study combined multiple classification models to form a multi-modal image and 

natural language classification architecture. The distinct property of the model used in 

this study is the balance it achieves between the importance of image and metadata. 

Each image is accompanied by a title and a longer description. To establish a baseline 

comparison, the image and text classification models are validated separately. 

ResNet50V214, Inception V315, and MobileNetV216 image classification models were 

 
14 From: https://www.tensorflow.org/api_docs/python/tf/keras/applications/ResNet50V2 
15 From: https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_v3 



 

 

trained solely on images. Likewise, USE and BERT models were trained to classify 

the titles and descriptions by their synset labels. [USE or BERT] was chosen for the 

final model based on the Top-5 Validation Accuracy17. Finally, multi-modal models 

that combine the image and metadata were trained to determine the effect of 

combining both methods of classification. 

  The image classification models apply the fixed features and fine-tuning methods 

of transfer learning. The first 50% of the layers of the ResNet50V2 and Inception V3 

are frozen, while the last 50% of the layers are fine-tuned to achieve a balance of 

accuracy and training speed. The text classification models were not fine-tuned, 

however, the sentence embeddings produced by both the BERT and USE models 

were passed through DNN layers before being concatenated with the image 

embeddings. The concatenated multimodal representation of each image is then sent 

to a final classification layer. A conceptual diagram of this model is shown in figure 

8. This model was implemented in TensorFlow (Abadi et. al, 2016). 

 

 

Fig. 8. Conceptual multi-modal model architecture combining image data and image metadata. 

 
16 From: https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNetV2 
17 Top-5 Accuracy extends Top-1 Accuracy by counting an instance as correctly classified if 

the correct class is in the top 5 predicted probabilities. Top-1 Accuracy is the common 

definition of accuracy: the ratio of correctly classified instances to the total number of 

instances. 



 

 

4   Experimental Setup 

  Batch sizes of 128 and 256 were used for training larger models (image and text) 

and smaller models (image only or text only), respectively. The optimizers NAdam 

(Dozat, 2015), AdaMax (Kingma et al., 2015), and Adagrad (Duchi, 2011) were used 

for training the models. These settings are summarized in table 2. The default 

optimizer parameters suggested by the TensorFlow optimizer documentation18 were 

used for each optimizer.  

Table 2.  Optimizer and batch size training settings.  

Type Model Optimizer Batch Size 

Baselines 

InceptionV3 Adagrad 256 

ResNet50V2 NAdam 256 

MobileNetV2 NAdam 256 

USE-DNN Adamax 256 

BERT-DNN NAdam 256 

Experiment 

InceptionV3-USE Adagrad 128 

InceptionV3-BERT Adagrad 128 

ResNet50V2-USE Adamax 128 

ResNet50V2-BERT NAdam 128 

MobileNetV2-USE Adamax 128 

MobileNetV2-BERT NAdam 128 

 

  The Center for Research Computing at Southern Methodist University provided the 

computational resources for this project on ManeFrame II. These models were trained 

on individual Nvidia P100 GPUs. At the time, it was not possible to train over 

multiple GPUs on the ManeFrame system. This limitation restricted the number of 

tuning studies that could be performed. Additionally, the load times for individual 

batches were exceedingly high. With such a large dataset, the load times severely 

hampered training.  

5   Results 

Since this study involved two types of data, a baseline is provided for each type of 

data. An InceptionV3 model, a ResNet50V2 model and a MobileNetV2 model were 

used as baselines for image classification. USE and BERT text vectorizers with a 

DNN were used as baseline models for text classification. Six experiments were 

conducted using the proposed architecture: fine-tuned image feature extractor 

augmented with a pre-trained USE or BERT text vectorizer. The results of each 

model on the test set are shown in table 2. Overall, the models utilizing the image and 

text embeddings appear to perform better than the model using only a single mode of 

 
18 https://www.tensorflow.org/api_docs/python/tf/keras/optimizers 



 

 

the data. The best model, X, provides an average improvement over the single-mode 

models of X.XX% and an increase of X.XX% over the model provided by the 

WebVision dataset creators (Li et al., 2017). The model results presented in table 3 

are the performance of models on the holdout dataset discussed in section 3. 

Table 3.  Performance of models on WebVision test set.  

Type Model Top-1 Accuracy Top-5 Accuracy 

Baselines 

InceptionV3 44.50 % 67.38 % 

ResNet50V2 46.60 % 70.56 % 

MobileNetV2 44.39 % 68.22 % 

USE-DNN 50.30 % 66.21 % 

BERT-DNN X % X % 

Experiment 

InceptionV3-USE X % X % 

InceptionV3-BERT X % X % 

ResNet50V2-USE 54.57 % 72.97 % 

ResNet50V2-BERT X % X % 

MobileNetV2-USE 50.64 % 70.17 % 

MobileNetV2-BERT X % X % 

6   Discussion 

The exploration of multi-modal models presents unique advantages in terms of 

robustness to noise within the dataset and versatility. The following sections 

summarize the advantages of using multi-modal models with data collected using 

unsupervised processes. 

6.1   Ensemble Advantages 

Panel of Experts. The parallel ensemble resembles a “panel of experts” architecture. 

Each feature extraction tower acts as an expert and the concatenation of the extracted 

vectors acts as the panel. As shown in figure 10, each feature extractor separates the 

classes in different ways with different quality of separation. 

  The three trained towers together show an incremental improvement on the 

predictive power of the individual image classifier. Given that the text classification 

elements have a significantly higher prediction accuracy, they provide a needed 

balance that improves the predictive power of the image classifier by effectively 

denoising the image set. 

  A completely trained multi-modal model using this type of architecture could also 

be deconstructed to utilize the predictive capacity of the three parts that form the 

panel of experts. Separating the three models could provide semantic similarity 

metrics between classes based on sentence embeddings for the image titles, for 

example, and these similarity metrics can offer title or description calibrations for new 

or existing titles and descriptions.  



 

 

Robustness to Missing Data. The ensemble architecture creates some robustness to 

missing data. When one input is missing, the other feature extractors still provide 

useful information for classification. The impact of missing data was analyzed with 

the following sets: five classes were selected at random from the body of data and the 

initial classification performance was evaluated. Then the model was tested on the 

same records, but with one item of data removed. The performance degradation from 

remove one of the three inputs was minimal. 

6.2   Applications 

There are a number of direct applications of this model architecture. Two direct 

internet-based applications are social media and image sharing websites. Images are a 

common medium used in social media websites. Social media images are typically 

accompanied with metadata entered by users. This type of model could be fine-tuned 

to automatically classify posts with images or generate vector representations of posts 

with images. This type of model could also be used by image sharing websites to 

classify images or create vector representations. As suggested by Gomez and 

associates (2019), deep joint representations of images and text can be used to 

improve search and query results. 

  The specific application of this multi-modal model allows a corporation to quickly 

tag images it hosts internally or from social media activity. An example of this 

activity would be the automatic generation of metadata for images hosted within 

websites. The top-5 most likely tags could be presented as suggested tags for 

uploaded media in an image-title-description format. 

 

 

Fig. 9. Using multi-modal model for corporate social messages. 

The possibilities for transfer learning of the features learned from the 5,000 classes 

of this model offer extensibility to the classification of far greater numbers of items. 



 

 

The features learned by the model could be used to implement additional fine-tuning 

to a quality check production line capacity. The multi-modal model could be given 

new sets of product defects, a brief summary of the type of defect, and a description 

of the ramifications or remedies for said defect. Queries of products could be 

associated with the images, titles, and descriptions, returning a much richer set of 

data. 

A third application of the model would involve a machine-in-the-loop verification 

process, shown in figure 9. Image-title-description trios taken by humans, such as 

those that might be produced during an insurance claim, can be verified using the 

model in this study. Image-title-description trios can be classified by the claims 

inspector, verified by the model, then forwarded to a third party that verifies a correct 

classification of the image. 



 

 

 

Fig. 10. Two-dimensional t-SNE embeddings of the vector representations of images from 

ResNet50V2 and vector representations of descriptions and titles produced by the USE.  

 



 

 

6.3   Ethics 

Algorithmic bias has been raised a serious issue with the growth of machine learning 

applications. Algorithmic bias as been shown to affect both computer vision models 

and natural language models (Builamwini and Gebru, 2018; Bolukbasi et al., 2016). 

Since the WebVision datasets contains both types of data (images and text), bias 

contained within each mode of data could compound the effects on models. 

Additionally, the WebVision dataset contains noise within some classes, which may 

perturb the model learning process. 

Dataset Bias. As noted in section 3, the WebVision dataset was collected in an 

unsupervised manner from image search engines. Since the collection process was 

unsupervised, the dataset inherited any biases present in the search engines or search 

engine results. Kay and associates showed that results from Google Image Search 

contained exaggerated gender stereotypes and unrepresented genders in certain 

careers (2015). Models trained on biased datasets may perpetuate learned biases. The 

effect of model bias on images was demonstrated by Builamwini and Gebru who 

showed that three commercial gender classification systems performed differently 

based on skin color (2018). Furthermore, Wang and associates showed models may 

amply biases existing in the dataset even for tasks not related to gender classification 

(2019). 

  This dataset text associated with the image data, which may also be a source of 

bias. Bias in word embeddings from top level algorithms such as GloVe (Pennington 

et al., 2014) and Word2Vec (Mikolov et al., 2013) has been well documented 

(Bolukbasi et al., 2016; Garg et al., 2018). However, the presence of bias in text 

embedding methods used in this study (BERT and USE) has not been deeply studied. 

Like GloVe and Word2Vec, dense vector representations of words are generated from 

BERT, but the representations from BERT are contextualized to the use case (Devlin 

et al., 2018). Kurita and associates demonstrated that BERT exhibited similar learned 

biases as GloVe and Word2Vec (2019). Unlike BERT, the USE does not create word 

embeddings, instead the USE generates vector representations from sentences (Devlin 

et al., 2018). Both the original authors of the USE (2019) and May and associates 

(2019) concluded that there is insufficient evidence to assert that the USE exhibits 

learned biases from text.  

Data Collection Noise. As mentioned in section 3, some of the WebVision classes 

were perturbed with noise during the collection process. The vector representations of 

the images, descriptions, and titles of 10 classes produced at the concatenation layer 

of the model developed in this paper were mapped into a 2-dimensional vector space 

with t-SNE (Kornblith et al., 2019; Pedregosa et al., 2011) to visualize class 

separation and class relations (inspired by the work of A. Karpathy19 and Gomez and 

associates) (2019). The t-SNE embedding and data examples of the 10 classes are 

shown figure 10. Based on figure 10, several classes such as “earwig” (n02272871) 

and “pea jacket, peacoat” (a03902756) appear well separated from other classes, 

 
19 https://cs.stanford.edu/people/karpathy/cnnembed/ 



 

 

while others such as “wrinkle, furrow, crease, crinkle, seam, line” (n013905792) and 

“flash camera” (n03358726) appear to exhibit more mixing with other classes. It is 

suspected that classes with generally good class separation were less affected by data 

collection noise. Classes that exhibit more mixing were either marred by data 

collection noise like “flash camera” as discussed in section 3.2 or are described in 

rather general terms like “wrinkle, furrow, crease, crinkle, seam, line”. Naturally, 

synsets of general terms will tend to capture a wider variance of items. Figure 11 

shows a two-dimensional representation of noise instances in “flash camera” 

(n03358726). 

 

 

Fig. 11. Two-dimensional t-SNE embeddings of the vector representations of images, 

descriptions, and titles of 10 classes produced by the concatenation layer (last layer before 

classification) of the model developed in this study along with example instances.  



 

 

 

Fig. 12. Vector representations of the noise in synset n03358726 (flash camera) in the two-

dimensional t-SNE vector space of images, descriptions, and titles produced by the 

concatenation layer (last layer before classification) in the model developed in this study. The 

same instances used to create figure 10 were used to generate this figure. 

7   Conclusions 

Continued improvements in image classification model development have progressed 

the realm of computer vision centered on deep learning. Approaches to enhancing 

deep learning models such as leveraging statistical methods to distribute spatial 

characteristics of images within convolutional layers have provided significant impact 

to this effort. Additionally, the advancement of deep learning tasks to solve Natural 

Language Processing problems using expansive lexical and semantic representations 

of language structures has been increasingly and reliably implemented for extracting 

meaning from vectorized character and word embeddings within dimensional space. 

Overlap in the foundational implementations of these two branched technologies has 

enabled the shared learning from each to impact the results of the other, in 



 

 

collaboration. This paper asserts that transferred learning between these two 

approaches provides a robust solution to noise, improving the overall performance 

accuracy of classification tasks in which both media can be modeled.  

Through this paper’s comparison of baseline model performance – where 

classification tasks are performed separately for each medium – to the performance of 

experimental developments leveraging transferred learning between both media of 

baseline technologies proves the assertions that transfer learning between image and 

text classification enhances performance accuracy. In all models used, both top-1 and 

top-5 accuracy scores were more improved for the transfer-based models than the 

standalone (non-transfer based) models. 

Respective of future developments, this paper will seek to produce continued 

statistical developments to further optimize transfer-based learning approaches to 

image and text classification. 
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