
Time Series Analysis

Basics
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Autoregressive Models
AR(1) Models
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AR(1) Properties
• Positive φ

– Realizations appear to be wandering (aperiodic)

– Autocorrelations are damped exponentials

– Spectral densities have peaks at zero

• Negative φ

– Realizations appear to be oscillating

– Autocorrelations are damped oscillating exponentials

– Spectral densities have peaks at f = 0.5

AR(2) Models
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AR(2) Properties

• Two Real Roots - Both Pos

– The realization will appear to be wandering

– The autocorrelations will be exponentially damped

– There will be a peak at 0

• Two Real Roots - Both Neg

– The realization will appear to be oscillating

– The autocorrelations will be damped oscillating
exponentials

– There will be a peak at 0.5

• Two Real Roots - One Each

– The realization will appear to be wandering and an
oscillation will run on the realization

– The autocorrelations will be exponentially damped with
a hint of oscillation

– There will be peaks at 0 and 0.5 in the spectal density

• One Complex

– The realization will appear to have a pseudo-cyclic
behavior with a cycle length of 1

f0

– The autocorrelations will be damped exponentials
oscillating in a sinusoid envelope with a frequency of f0

– There will be a peak at f0 (between 0 and 0.5)
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AR(p) Models

Xt − β + φ1Xt−1 + φ2Xt−2 + ...+ φ2Xt−p = at

xt − φ1BXt − φ2B2Xt − ...− φpBpXt = at

Key Concepts

• An AR(p) model is stationary if and only if all the roots of
the characteristic equation are outside the unit circle.

• Any AR(p) characteristic equation can be numerically
factored into 1st and 2nd order elements.

• These factors are interpreted as contributing AR(1) and
AR(2) behaviors to the total behavior of the AR(p) model.

Factor Contributions

AR(p) models reflect a contribution of AR(1) and AR(2)
contributions. Roots that are close to the unit circle will be the
dominate behavior.

• First order factors (1− φ1B)

– Associated with real roots

– Contribute AR(1)-type behavior to the AR(p) model

– Associated with a system frequency of 0 if φ1 is positive
or 0.5 if φ1 is negative

• Second order factors (1− φ1B − φ2B2)

– Associated with complex roots

– Contribute cyclic AR(2) behavior to the AR(p) model

– Associated with a system frequency of f0

Moving Average Models
MA(1) Models
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MA(2) Models

Xt = at − θ1at−1 − θ2at−2
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MA(q) Models

Xt = at − θ1at−1 − ...− θ2at−q
xt = at − θ1Bat − ...− θqBqXt

Key Concepts

• MA models are a finite GLP

• MA models are always stationary

• MA models are invertable iff all the roots are outside of the
unit circle.



MA Inversion
• Real Root: use 1/θ

• Complex Roots: use θ1 = r−1
1 + r−1

2 and θ2 = −r−1
1 r−1

2

ARMA(p,q) Models

Xt = β + φ1Xt−1 + ...+ φ2Xt−p = at − θ1at−1 − ...− θ2at−q
xt − φ1BXt − ...− φpBpXt = at − θ1Bat − ...− θqBqXt

Key Concepts
• Valid when the model is stationary and invertable

– Stationary: roots of φ(z) are outside the unit circle

– Invertable: roots of θ(z) are outside the unit circle

• φ(z) and θ(z) have no common factors (check)

ARIMA
General Form

φ (B) (1−B)dXt = θ (B) at

Properties
• The roots on the unit circle dominate the behavior of the

realization

• The autocorrelations are defined to have a magnitude of 1
(ρk = 1)

• The variance of ARIMA is not well defined

ARUMA
ARUMA is an generalization of ARIMA that includes a term or
term(s) for seasonality.

φ (B) (1−B)d (1−Bs)Xt = θ (B) at
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General Linear Processes
General Form
Use psi.weights.wge to calculate ψs

Xt − µ =
∞∑
j=0

ψjat−j

• An MA model can be represented as finite GLP

• An AR model can be represented as infinite GLP

Forecasting
Notation
• t0 - origin of the forecast

• l - number of time units to forecast (lead time)

• X̂t0 (l) - the forecast of Xt0+l given data up to t0

ARMA Forecasting
Use fore.arma.wge() for forecasting.
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Facts

et0 (l) = Xt0+l − X̂t0 (l)
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ARIMA Forecasting
Use fore.aruma.wge() for forecasting.

• Limits become unbounded as l increases

• A factor of (1−B) does not forecast a trend. An order of
d > 1 is required to forecast a trend.

ARIMA with Seasonality Forecasting
The forecast for step l is same as the last s value. Use
fore.aruma.wge() for forecasting.

• Limits become unbounded as l increases

• A factor of (1−B) does not forecast a trend. An order of
d > 1 is required to forecast a trend.

• (1−B) (1−Bs) = at is called an airline model.

Linear Forecasting
Use fore.sigplusnoise.wge() for forecasting.

• Fit an OLS to Xt

• Fit an AR(p) to the residuals (Zt)

X̂t0 (l) = b0 + b1t+ Ẑt0 (l)

FI : b0 + b1t+ Ẑt0 (l)± z1−α/2σ̂a
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Non-Stationary Tests
Dicky-Fuller Test

H0 : The model has a root of + 1

Ha : The model does not have a root of + 1

This test has a high type II error rate, increasing as a root
approaches the unit circle.

Cochrane-Orcutt Test

This is a test for the presence of a linear slope corrected for an
AR(1) noise structure.

H0 : b = 0

Ha : b 6= 0

Metrics

AIC - ARMA Objective

AIC = ln(σ̂a) + 2

(
p+ q + 1

n

)
Filtering
Filters transform time series.

Zt → H(B)→ Xt

X(t) = Z(t)H(B)

There are four basic types of filters.

• High pass - filters out low frequencies

• Low pass - filters out high frequencies

• Band pass - filters out frequencies outside the band

• Band stop - filters out frequencies inside the band

Difference Filter

The first order difference is expressed by the following

Xt = Zt − Zt−1

H(B) = B0 −B

This is a high pass filter.

Moving Average Filter

A 5-point moving average filter can be expressed as

Xt =
Zt+2 + Zt+1 + Zt + Zt−1 + Zt−2

5

H(B) =
B−2 +B−1 +B0 +B +B2

5

This is a low pass filter.

Band-Type Filter

High pass and low pass filters can be combined to produce band pass
and band stop filters.
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