
MSDS7330 TERM PAPER 1

A Datalake Solution for
Time Series Data

Paul Adams, paula@smu.edu, Rikel Djoko, rdjoko@smu.edu, and Stuart Miller, stuart@smu.edu

Abstract—In this paper, we present a solution for warehousing
structured and semi-structured financial markets time series
data. Traditional systems, such as SQL databases, are well suited
for storing highly structured data, but were not designed to
store semi-structured forms of data. Additionally, traditional
systems, which operate with ACID transactions, can be slow
over large volumes of data. ”Big Data” systems were developed
to store this type of data, addressing this gap in data storage
system technology. We developed a system to store structured
and semi-structured time series data based on the Apache
Hadoop ecosystem. Based on the results of testing read query
performance, schema denormalization and increasing the Hadoop
cluster size will reduce query times. A distributed data warehouse
framework like Hadoop could be used in cases where data scaling
is expected, requiring the computing infrastructure to scale with
the data.

I. INTRODUCTION

THe ability to capture and generate large volumes of data
is an issue many enterprises face. Traditionally, data gen-

eration systems were slow and the data was easily structured,
which lent to the use of traditional systems. However, “Big
Data” is often semi-structured or unstructured and can be
generated at high rates, such as server logs or real-time sensor
data [5]. ”Big Data” technologies were developed to address
the gap between the current type of data that are generated and
collected and capacity of traditional storage tools [1]. These
“Big Data” technologies are able to collect data in raw form
and provide access to the data, often using languages similar
to Structured Query Language (SQL).

An example of “Big Data” is financial market data and
related ”alternative” data that may be useful for prediction.
For alternative data to be useful to a prediction system, it
must be stored in a system that can provide low query time.
Additionally, it must be able to work with data that does
not follow strict structuring, such as text-based messages or
images. In financial market modeling, alternative data is any
type of data outside the financial domain [18]. An application
of financial market prediction using alternative data is utilizing
Twitter data to make predictions on the stock market [19]. A
data storage system would need to store large volumes of time
series data and provide rapid query access to those volumes
to support a financial market prediction engine. In this paper,
we will present a “Big Data” system that can be used to
store and access large volumes of time series data. Stock data,
intraday and daily, will be the primary time series used in the
analysis. Data from Twitter will serve as the primary source of
alternative data. For this analysis, we collected approximately
four-hundred thousand tweets from over one-hundred Twitter
accounts and approximately 49 million stock data points.

The Hadoop ecosystem is at the core of this system. Hadoop
is an open source framework for distributed computing that
is sponsored by the Apache Software Foundation1 [13]. Since
Hadoop is a distributed computing framework, the server clus-
ter used in the implementation can be horizontally scaled to
accommodate the need for more computing power as the data
storage grows. The Hadoop ecosystem consists of modules for
file storage, data warehousing, data flow, data analysis, and
machine learning. The primary components of Hadoop used
in this system are Hadoop Distributed File System (HDFS)
and Hive.

HDFS is a file system distributed over multiple servers (a
server cluster) [13]. The processing framework that enables
this is called MapReduce, which assigns nodes for “mapping”
and “reducing” processes by applying various configurations,
such as related to memory allocation and numbers of mappers
and reducers [11]. As data is mapped, it is reprocessed into
a derivative data set, split into tuples that are then processed
across the cluster, in parallel, and reassembled in the reduce
process [11]. Hive is a distributed data warehouse that manages
data stored in HDFS [13]. Hive provides an SQL-like query
language to access and retrieve the data stored in HDFS.

We implemented the solution with Amazon Web Services
(AWS), which provides a set of cloud services for data storage
and warehousing. Elastic MapReduce (EMR) is a preconfig-
ured service for Hadoop provided by AWS. EMR runs on
a cluster of Elastic Compute 2 (EC2) servers, which can be
horizontally scaled as needed. We used EMR for the physical
implementation of the Hadoop ecosystem in this project.

We designed two schemas for the data warehouse in a
star configuration. The first schema was designed in a fully
normalized fashion, which is known as a snowflake schema.
Our second schema was based on the snowflake schema,
but denormalized to limit the number of tables, which limits
the number of joins required in queries. Query performance
will be measured on these schemas to determine how much
improvement in query time is provided by schema denormalzi-
ation.

We will test the performance of this system implementation
with the collected stock and Twitter data. Performance of the
data warehouse is based on time taken to process the data
queried in the Hive warehouse. The analysis will examine the
improvement in performance from the schema denormalization
and increasing the EMR cluster size. We will use a two-way
analysis of variance (ANOVA) to compare the differences in
combinations of schema and EMR cluster size.

1https://hadoop.apache.org/

MSDS7330 TERM PAPER 2

II. DATA

We collected stock data and Twitter data for this study. Both
daily and intraday stock price data were collected for use in
this analysis. Twitter2 was chosen as the primary source of
alternative data because of ease-of-access to the Twitter API3

and the large volume of available data. Categories of data are
summarized in Table I and a full list of features is given in
Appendix A.

A. Stock Data

The stock price data was collected through an API provided
by Alpha Vantage4. The R5 programming language was used
to collect data from the Alpha Vantage API, using the R
package alphavantager6 [14]. This API provided access to
daily prices, intraday stock prices, and intraday price features
from the following associated categories: Bollinger bands,
stochastic oscillators, moving averages, and exponential mov-
ing averages.

The stock data was collected from Oct. 04, 2019 to Oct. 24,
2019 on all 2520 symbols traded on the NYSE and all 3213
symbols traded on the NASDAQ. A single value was stored
for each feature of the daily prices. The intraday values were
sampled at 15-minute intervals from market open to market
close. This resulted in a total of 49,093,917 stock data points.

B. Twitter Data

Messages on Twitter (called tweets) are mainly comprised
of tweet ID, timestamp, user (screen name), and text. Tweets
can also contain many other features such as URLs, hashtags,
emojis, and mentions. For this analysis, in addition to the main
features, URLs, hashtags, and mentions were also collected in
the data warehouse. A mention is a reference to another Twitter
user’s screen name in the text of a tweet. A hashtag is some
collection of characters starting with ’#’ without white space.
Generally, the character portion of a hashtag will be a word or
set of words, but this is not necessary. An example of a tweet
containing one hashtag (#FF) and one mention (@everett)
is given in Listing 1 (the value of ’full_text’).

We collected 423,802 tweets from 108 Twitter users, using
the Python7 module Twython8. The data from Twitter is
returned in JavaScript Object Notation (JSON); an example
is shown in Listing 1. The features of interest were extracted
from the JSON files and reformatted in tab separated files
(TSV) using Python and the built-in JSON and CSV modules.
After the tweets were extracted from Twitter, mentions of
company names or stock symbols were extracted from the
tweet text by matching sections of tweet text to company
names and company stock symbols. All other featured were
extracted from the JSON, by key.

2https://www.twitter.com/
3https://developer.twitter.com/en/docs
4https://www.alphavantage.co/
5Version 3.6.1
6https://cran.r-project.org/web/packages/alphavantager/index.html
7Version 3.6.8
8https://pypi.org/project/twython/3.6.0/

TABLE I
DATA CATEGORIES

Source Features

Stock Daily
Symbol
Time Stamp
Prices

Stock Intraday

Symbol
Time Stamp
Prices
Bollinger Bands
Moving Averages
Stochastic Indicators

Twitter

Symbol
Time Stamp
User
Text
URLs
Hashtags
Mentions

Listing 1. Sample Tweet JSON
{ ’ cre a ted a t ’ : ’ F r i Oct 25 0 7 : 4 4 : 3 8 +0000

2019 ’ ,
’ id ’ : 1187636067505188864 ,
’ i d s t r ’ : ’1187636067505188864 ’ ,
’ f u l l t e x t ’ : ’ @ e v e r e t t where do I s t a r t

w i th t h i s company ? #FF ! ! ! ! ’ ,
’ t r u n c a t e d ’ : F a l s e ,
’ d i s p l a y t e x t r a n g e ’ : [0 , 5 2] ,
’ e n t i t i e s ’ : {

’ hashtags ’ : [
{ ’ t e x t ’ : ’FF ’ ,

’ i n d i c e s ’ : [4 5 , 4 8]}] ,
’ symbols ’ : [] ,
’ user mentions ’ : [

{ ’ screen name ’ : ’ e v e n e v e r e t t ’ ,
’ name ’ : ’ Even E v e r e t t ’ ,
’ id ’ : 21841004 ,
’ i d s t r ’ : ’21841004 ’ ,
’ i n d i c e s ’ : [0 , 1 0]}] ,

’ ur l s ’ : [
” i n d i c e s ” : [3 2 , 5 2] ,
” u r l ” : ” h t t p : / / t . co / TZR” ,
” d i s p l a y u r l ” : ” you . com / watch ? v=

o H g ” ,
” expanded url ” : ” h t t p : / / www. you . com /

watch ? v=TZR”]}
’ user ’ : { ’ id ’ : 14216123 ,

’ i d s t r ’ : ’14216123 ’ ,
’ name ’ : ’ Jim Jim ’ ,
’ screen name ’ : ’ j imj im ’ ,
. . . }

}

As shown in Listing 1, the timestamp, text, and tweet ID
can be accessed at the top level of the JSON object with
created_at, full_text, and id_str, respectively. The

https://developer.twitter.com/en/docs
https://www.alphavantage.co/

MSDS7330 TERM PAPER 3

Fig. 1. Conceptual Diagram of the Data Warehouse Snowflake Schema

user information can be accessed from the key user, which
accesses another set of objects. The values for screen_name
and id_str were extracted for the user. The hashtags,
mentions, and URLs are located under the key entities
as hashtags, user_mentions, and urls, respectively.
Each of these keys under entities, return an array of
objects, containing the features of interest. The value for text
under hashtags was the only value collected for the hash-
tags (#FF in the example). The values for screen_name and
id_str under user_mentions were collected for men-
tions (even_everett and 21841004, respectively, in the
example). Only the value of expanded_url was collected
for urls (http://www.you.com/watch?v=TZR in the
example).

III. DATA WAREHOUSE DEVELOPMENT

Data warehouses are often designed with a star schema
[2]. In a star schema design, there is a central table (called
the fact table), which contains the unifying features of the
dataset and keys to other tables [2]. The tables surrounding
the fact table (called dimension tables) contain information
related to a category of the facts [4]. In the dataset for this
analysis, the unifying features are timestamp and company
stock symbol. The combination of timestamp and symbol is
a natural key into the stock data and the twitter data. These
features were included on the fact table as the primary key.
The company name and exchange market associated with the
symbols were included on the fact table for convenience. The
natural dimensions of the fact table are intraday stock data,
daily stock data, and tweet data.

In some cases, dimensions can be normalized into multiple
tables. When the dimensions of a star schema are are normal-
ized, the schema is in its snowflake form [3]. In this study,
two schemas were designed: one in snowflake form and the
other in a denormalized form. We will consider a star schema
in snowflake form when it is normalized into third normal
form (3NF), meaning the domains of the attributes are atomic
and there are no functional dependencies on a portion of the
primary key [17].

A. Snowflake Schema

As noted previously, the fact table of this star design con-
tained the company symbols and timestamps as a composite

Fig. 2. Conceptual Diagram of the Data Warehouse Denormalized Star
Schema

primary key. The three dimensions of the fact table, daily stock
data, intraday stock data, and tweet data, share the primary key
of the fact table.

The stock data comes in a form suitable for the snowflake
design; it is already in 3NF. However, the intraday data was
split into five tables for a more general use schema design:
prices, Bollinger bands, moving averages, and stochastic in-
dicators. The daily stock table and the intraday stock tables
are shown joining to the fact table in Fig. 1 (left side of the
schema diagram).

Like the stock data, the tweet data came with a timestamp,
but stock symbol is not a nominal feature of tweets. The stock
symbol feature was generated by extracting matching strings
during the data collection process; therefore, stock symbols are
not guaranteed to be non-null in the tweet dimension. Thus,
the same features can still be used to join the tweet dimension
to the fact table, but cannot serve as a primary key. However,
Twitter assigns a tweet ID for each tweet, which is guaranteed
to be a primary key. The tweet ID was used as the primary
key of the tweet table.

As noted previously, three secondary features of tweets are
used in this study. Each of these features, mentions, hashtags,
and URLs, is a normalizable feature of the tweet dimension.
To achieve a 3NF design, the unique attributes of the tweets
were collected in a central table and tables were created for
mentions, hashtags, and URLs. Since there is a many-to-many
cardinality between the central tweet table and each of the
three secondary members, join tables were created to connect
the secondary tables to the central tweet table. The result of
the tweet dimension normalization is shown conceptually in
Fig. 1 (right side of schema diagram).

B. Denormalized Star Schema

While the snowflake schema is suitable for general use
cases. The number of tables should be limited to decrease
query read time to support fast data transfer to a machine
learning system. The number of intraday tables and tweet
tables were reduced to support fast query times. All intraday
tables were combined into one table. Each secondary member
of the normalized tweet dimension was subsumed into a copy
of the main tweet table, reducing the number of tables in the
tweet dimension from seven to three. The schema resulting
from this denormalization process is shown conceptually in
Fig. 2.

MSDS7330 TERM PAPER 4

Fig. 3. HDFS Architecture [7]

IV. IMPLEMENTATION

Multiple vendors provide platforms and infrastructure for
data warehousing technologies, this project was implemented
using Amazon Web Services (AWS). AWS is a set of cloud
computing services provided by Amazon.com9 that are acces-
sible over the internet. AWS provides multiple services for
many different applications. Elastic MapReduce (EMR) was
used for the implementation of Hadoop in this project.

A. AWS Elastic MapReduce

AWS EMR is a pre-configured compute cluster for Big
Data. The cluster can be provisioned and terminated on
demand as needed. It comes with a configurable set of the
Hadoop ecosystem elements pre-installed and ready to use.
The EMR cluster used in this study was provisioned with three
m5.xlarge10 elastic compute instances using version 5.27.0 of
the EMR software11.

B. Apache Hadoop

Hadoop is an open source software framework for dis-
tributed storage and distributed processing of very large
datasets. The core of Apache Hadoop consists of a storage part
- Hadoop Distributed File System (HDFS) - and a processing
part - Hadoop MapReduce.

1) Hadoop Distributed File System (HDFS) and MapRe-
duce: Unlike traditional file systems, the Hadoop Distributed
File System (HDFS) is a distributed file system designed to
run on commodity hardware. HDFS architecture consists of a
master node, called a “NameNode” and at least one slave node,
called “DataNodes.” [13]. The NameNode is the controller
which manages storing data and providing metadata of the data
to the DataNodes. The metadata includes a Namespace lookup
table used to locate each file from the Datanodes, which assist
in node cluster-computing.

9https://aws.amazon.com/
10https://aws.amazon.com/ec2/instance-types/m5/
11emr-5.27.0 contains Amazon Hadoop 2.8.5, Hive 2.3.5, and Hue

4.4.0. See https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-
5x.html

Fig. 4. Overview of Data Warehouse System

HDFS works by storing duplicate copies of data blocks
across multiple servers. Those blocks are then split into
chunks, which are then replicated across the cluster, partitioned
by server rack. Data jobs take advantage of this feature by
breaking down into tasks, where each task pairs with blocks
of data and are then processed across the cluster. If one job
fails, it can be restarted by the other running tasks until all
tasks have been completed and data compiled for the end-user
[6].

In reference to Fig. 3, the client - in our case, Hive, but
this can be a different application supported by the Hadoop
ecosystem - requests a read operation by passing blocks of
HDFS files from Datanodes in server Rack 1 with their
associated metadata to the Namenode, which then delegates
block processing operations to the Datanodes in serverRack
2. Tasks are assigned from the Namenode and partitioned
across the racks of servers. Although all data is in both racks -
because write operations replicate data across the server racks,
as indicated in Fig. 3 - each server rack has unique tasks to
operate. As mentioned, in the event a task fails in a node,
another node will resume the task since the data is duplicated
[6].

2) Hadoop MapReduce: Hadoop MapReduce is a program-
ming model for large-scale data processing. With MapReduce,
instead of using one server instance with multiple processors,
multiple servers with multiple processors are used for compu-
tation. This is refered to as a distributed computing system.

MapReduce uses the “divide and conquer technique” where
the input is divided into a set of small tasks. Each task is
identified by a key-value pair [9]. The key serves as a task ID
and the value as the task output. Each task is then processed
and executed by the mapper and the outputs are processed and
merged by the reducer [10]. MapReduce couples with HDFS to
enable horizontal scaling in a cluster-computing environment.

C. AWS Simple Storage Service

As the name implies, the S3 is a storage system. It is used to
store and retrieve any amount of data any time, from anywhere
on the web. S3 is reliable, fast, and inexpensive. We used this
to share data and load directly into HDFS.

MSDS7330 TERM PAPER 5

TABLE II
READ QUERY RESULTS

Schema Cluster Nodes
Query Time (seconds)

Mean Standard Deviation

Snowflake
3 121.05 4.12
5 94.49 4.01

Denormalized Star
3 103.77 2.99
5 79.68 5.86

D. Apache Hive

Apache Hive is a data warehouse application built on top of
Hadoop. We used Hive to structure, organize, model, and query
our data using the Hive Query Language, HQL. We structured
files from within the Hadoop Distributed File System (HDFS)
and loaded them into tables within Hive. Hive operates by
using the HDFS storage to generate tables. However, when
Hive queries are executed, the data is retrieved from HDFS via
the compiler, which uses an execution engine and metastore
to return results [12].

E. Cloudera Hue

Cloudera Hue12 is an open source web application that
served as user interface for Hadoop components. Hue provides
access to Hadoop from within a browser, allowing users to
interact with the Hadoop ecosystem applications. Hue is an
alternative to accessing the Hadoop ecosystem applications
from the command line interface. Hue was used to interact
with the EMR cluster and run Hive scripts.

F. System Design

Once fully configured, the system we developed included
three- or five-node EMR clusters. Data collected by members
of our team were stored in Amazon S3. The data was loaded
into HDFS from S3 prior to creating structured tables in Hive.
Local hosts would connect to the Namenode master server
by SSH to allow interfacing with Hue. Hive tasks would be
executed on the EMR cluster from the Hue interfaces to create
and load the data warehouse (as shown in Fig. 4).

V. STUDY DESIGN

In this study, we will investigate the impact of schema
normalization and EMR cluster size on the performance of
a read query. Both schemas presented in Section III were
tested on EMR clusters with 3 nodes and 5 nodes. This is
a two-way ANOVA where ERM cluster size and schema are
the explanatory factor variables and the response variable is
query execution time [15].

During performance testing, we gathered all fields from all
tables, joining all tables in the schema together. Joining all
tables enabled capturing the entirety of the database, under
each schema, to produce the same results. These queries were
limited to 75,000 returned records to enable gathering more
runtime samples. This number was decided to be reasonable

12https://gethue.com/

Fig. 5. Average of Query Time by Schema and Block Size with Standard
Deviation Bars

based on the difference in performance time. As noted in the
analysis section below, the performance time between queries
was significant at 75,000 records; limited a higher volume
of returned records would have increased the significance.
Therefore, 75,000 was determined reasonable for analysis.

VI. RESULTS

As discussed in Section V, a two-way ANOVA test was
performed. We identified that the interaction between schema
design and server count provide significant results, indicating
that there is a difference in the proportions of performance
speed between the two schemas when considering count
of servers in a cluster. The dependence of performance on
combinations of schema and cluster size is apparent in Fig. 5,
which shows boxplots of the query times of each combination
of schema and cluster size. The red boxes represent the query
times for the snowflake schema and the blue boxes represent
the query times for the denormalized schema. The boxplot is
faceted by cluster size with the three-node results on the right
and the five-node results on the left. The query time of the
denormalized schema is lower than the normalized schema
for both sizes of clusters.

We find that, while holding cluster size constant, schema de-
sign is significant on performance across both server sizes (p-
value < 0.0001, F = 999.187). Denormalizing the snowflake
schema provided a 14.27% decrease in mean query time on
the three-node cluster and a 15.67% decrease mean in query
time on the five-node cluster. Furthermore, while holding
schema design constant, performance speed difference was
also significant (p-value < 0.0001, F = 3399.954) between
the two cluster sizes with the five-node cluster outperforming
the three-node cluster. A summary of the results is shown in
Table II.

VII. ANALYSIS

In analyzing the exploratory graphical analysis of the clus-
ters, the interaction between schema and cluster size is such

MSDS7330 TERM PAPER 6

that as cluster size increases, the normalized schema ap-
proaches a similar level of performance. However, testing indi-
cates there is still a statistically significant difference between
performance at the five-server cluster level. Further testing
could identify that, while holding database size constant, at
some server level, the normalized schema may outperform
the de-normalized schema. However, this is based on linear
approximation that may become non-linear with more samples
and clusters. Regardless, under both cluster sizes, the de-
normalized schema outperformed the normalized schema by a
level of statistical significance.

VIII. CONCLUSIONS

With the increase in data collection activities, data storage
systems will need to provide results of read queries on large
datasets. This analysis shows that query times of distributed
data warehouses can be reduced by denormalizing the schema
or scaling up the number of servers in the physical implemen-
tation. While schema denormalization does provide improve-
ments for read queries, migration to a new schema may not
be possible or may introduce other undesirable effects because
the data definition and manipulation logic will be affected.
Since the logical design of the warehouse is abstracted from
the physical implementation, increasing cluster size would
be a better solution. If read performance improvement on a
distributed data warehousing system is needed, we recommend
increasing the cluster size of the physical system.

APPENDIX A
DATA FEATURES

This section contains a full listing of all the features
collected for this study. The features are listed by general
category as shown in Table I.

A. Daily Stock Features
The daily stock features are described below and are orga-

nized in the following categories: Key Values and Prices. The
value for time was imputed to a standard value for the daily
values.

1) Key Values:
• Symbol
• Time
• Date
2) Prices:
• Open
• Close
• High
• Low

B. Intraday Stock Features

The intraday stock features are described below and are
organized in the following categories: Key Values, Prices,
Bollenger Bands, Moving Averages, and Stochastic Indicators.

1) Key Values:
• Symbol
• Time
• Date

2) Prices:

• Open
• Close
• High
• Low

3) Bollenger Bands:

• Open Lower Band
• Open Middle Band
• Open Upper Band
• Close Lower Band
• Close Middle Band
• Close Upper Band
• High Lower Band
• High Middle Band
• High Upper Band
• Low Lower Band
• Low Middle Band
• Low Upper Band

4) Moving Averages:

• Open Convergence Divergence
• Open Convergence Divergence Signal
• Open Convergence Divergence Historical
• Open Exponential
• Close Convergence Divergence
• Close Convergence Divergence Signal
• Close Convergence Divergence Historical
• Close Exponential
• High Convergence Divergence
• High Convergence Divergence Signal
• High Convergence Divergence Historical
• High Exponential
• Low Convergence Divergence
• Low Convergence Divergence Signal
• Low Convergence Divergence Historical
• Low Exponential

5) Stochastic Indicators:

• 5-day indicator
• 3-day indicator

C. Twitter Features

The twitter features are described below and are organized
in the following categories: Unique and Common. Unique
features are specific to a particular tweet and common features
are shared across many tweets.

1) Unique:

• Tweet ID
• Timestamp
• User (Author)
• Text

2) Common:

• Hashtags
• URLs
• User Mentions

MSDS7330 TERM PAPER 7

REFERENCES

[1] R. Kune, P. Konugurthi, A. Agarwal, R. Chillarige, R. Buyya, ”The
Anatomy of Big Data Computing,” Software: Practice and Experience,
Vol. 46 no. 1, pp.79-105, Jan. 2016.

[2] W. H. Inmon, ”Unstructured Data and the Data Warehouse,” in Building
the Data Warehouse, 4th ed. Hoboken: Wiley, 2005, ch. 11. Accessed
on Nov. 6, 2019 [Online]. Available:
https://learning.oreilly.com/library/view/building-the-
data/9780764599446

[3] I. Moalla, A. Nabli, L. Bouzguendam and M. Hammami, ”Data warehouse
design approaches from social media: review and comparison,” Social
Network Analysis and Mining., Vol. 7, no. 1, pp. 1-14, Jan. 2017.
Accessed on: Nov. 6, 2019 [Online]. Available doi: 10.1007/s13278-017-
0423-8

[4] A. Gorelik, ”Historical Perspectives,” in The Enterprise Big Data Lake,
1st ed. Sebastopol, CA: Wiley, 2019, ch. 2, pp. 25-47.

[5] ”Extract, Transform, and Load Big Data with Apache Hadoop,” Intel,
USA, 2013. Available:
https://software.intel.com/sites/default/files/article/402274/etl-big-data-
with-hadoop.pdf

[6] S. Alapati, Expert Hadoop Administration, 1st ed. Boston, MA: Addison-
Wesley, 2017.

[7] D. Borthakur, HDFS Architecture Guide, The Apache Software Founda-
tion, August 22 2019. Accessed on: Nov. 8, 2019. [Online] Available:
https://hadoop.apache.org/docs/r1.2.1/hdfs design.html

[8] D. Sitaram, G. Manjunath Moving To The Cloud. Boston: Syngress, 2012,
pp. 205253.

[9] S. Zhao, R. Li, W. Tian, W. Xiao, X. Dong, D. Liao, S. U. Khan, L. Keqin,
Divide-and-conquer approach for solving singular value decomposition
based on MapReduce, Abbrev. Title of Journal, vol. 28, no. 2, pp.
331350, Nov. 2016. Accessed on: Nov. 10, 2019 [Online]. Available:
doi:10.1002/cpe.3436.

[10] D. Miner, A. Shook, MapReduce Design Patterns, 1st ed. Sebastopol,
CA: O’Reilly Media, 2012, pp. 56.

[11] D. Miner, A. Shook, Hadoop MapReduce v2 Cookbook, 2nd ed.
Sebastopol, CA: O’Reilly Media, 2015, pp. 1.

[12] H. Bansal, S. Chauhan, S. Mehrota, Apache Hive Cookbook, 1st ed.
Birmingham, UK: Packt Publishing, Limited, 2016.

[13] T. White, Hadoop: The Definitive Guide, 1st ed. Sebastopol, CA:
O’Reilly Media, 2009, pp. 44.

[14] R Core Team, R: A language and environment for Statistical Computing,
Vienna, Austria: 2018. Available: https://www.R-project.org/

[15] M. Crawley, ”Analysis of Variance,” in The R Book, 1st ed. Chichester,
West Sussex, United Kingdom: Wiley, 2013, ch. 11, pp. 470-478.

[16] K. Tannir, ”Enhancing Map and Reduce Tasks,” in Optimizing Hadoop
for MapReduce, 1st ed. Birmingham, England: Packt Publishing Ltd,
2014, ch. 5. Accessed on: Nov. 20, 2019 [Online].

[17] A. Silberschatz, H. Korth, and S. Sudarshan, ”Relational Database
Design,” in Database Design Concepts, 6th ed. NY: McGraw-Hill, 2011,
ch. 8, sec. 8.3, pp. 329 - 338.

[18] C. Xiao and W. Chen, Trading the Twitter Sentiment with Reinforcement
Learning, arXiv:1801.02243v1 [cs.AI], Jan. 2018. Accessed on: Dec. 7,
2019 [Online]. Available: https://arxiv.org/pdf/1801.02243.pdf.

[19] J. Bollen and H. Mao. ”Twitter mood as a stock market predictor,”
Computer, Vol. 44, no. 10, pp. 9194, 2011. Accessed on: Dec. 7, 2019
[Online]. Available: doi: 10.1109/MC.2011.323

	Introduction
	Data
	Stock Data
	Twitter Data

	Data Warehouse Development
	Snowflake Schema
	Denormalized Star Schema

	Implementation
	AWS Elastic MapReduce
	Apache Hadoop
	Hadoop Distributed File System (HDFS) and MapReduce
	Hadoop MapReduce

	AWS Simple Storage Service
	Apache Hive
	Cloudera Hue
	System Design

	Study Design
	Results
	Analysis
	Conclusions
	Appendix A: Data Features
	Daily Stock Features
	Key Values
	Prices

	Intraday Stock Features
	Key Values
	Prices
	Bollenger Bands
	Moving Averages
	Stochastic Indicators

	Twitter Features
	Unique
	Common

	References

