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The Need

We would like to 
forecast the next 
recession. 

Definition

Two consecutive 
quarters of decline in 
GDP is considered a 
working definition of a 
recession.*

Proposed Solution

We will forecast the 
GDP for the next 2 
quarters to see if the  
models can predict the 
next recession.

* https://www.investopedia.com/terms/r/recession.asp

https://www.investopedia.com/terms/r/recession.asp
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Dataset
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• Response Variable: % change in GDP (USA)

• Quarterly observations from 1982 to 2019

• 151 observations

Response Variable

• An additional 20 exogenous variables were also collected. 

• Contained economic indicators related to the labor 
market, monitory policy, consumer related data, business 
environment, stock data, exchange rates and several 
macro-economic factors

Exogenous Variables

Data was collected from the Federal Reserve Bank of St. 
Louis Economic Data (FRED) https://fred.stlouisfed.org/

https://fred.stlouisfed.org/
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Univariate EDA: Checking Stationarity

4

• Constant Mean
o The mean does not appear to change over time. There does not 
appear to be evidence of a deterministic signal or oscillatory process.

• Constant Variance
o The realization does not appear to show sufficient evidence of non-
constant variance.

o However, we only have one realization so this is difficult to assess.

Condition 1 & 2: Constant Mean & Variance
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Univariate EDA: Checking Stationarity
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• The significant ACFs of the first and second half of the 
realization exhibit similar. Additionally, they appear to exhibit 
similar characteristics as the full data set.

Condition 3: The correlation of 𝑿𝒕𝟏 and 𝑿𝒕𝟐

depends only on 𝒕𝟐 − 𝒕𝟏
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Univariate Modeling: Model ID
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ARMA(2,0) Factored Model

1 − 0.7391𝐵 1 + 0.3472𝐵 𝑋𝑡 − 5.149 = 𝑎𝑡
𝑤𝑖𝑡ℎ ො𝜎𝑎

2 = 5.618

An ARMA(2, 0) was selected by both AIC and BIC.

p q AIC

2 0 1.765702

1 1 1.772199

1 2 1.776732

2 1 1.778418

3 0 1.778594

p q BIC

2 0 1.825648

1 1 1.832145

1 0 1.854565

1 2 1.85666

2 1 1.858346
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Univariate Modeling: White Noise Evaluation
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The time plot of the model residuals 
appear to be generally consistent with 
white noise. 

Only two of the autocorrelations of the 
residuals appear to be marginally 
significant. This is not unusual with at 
95% confidence level.

The Ljung-Box test fails to reject the 
null hypothesis at K = 24 and K = 48.
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Univariate Modeling: Simulated Realizations
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Univariate Modeling: Performance
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Batch Size = 50 observations (Use 4 years of data to predict the next 2 quarters)

As expected, the ARMA model appears to capture the movement of the realization. 
However, it does not capture the sharp changes in the realization.

Generally, the model appears forecast ASE less than 15 over the sliding window. The 
primary error occurs at the large change in step 100.
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Multivariate EDA: Realizations
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Multivariate EDA: Cross Correlation Analysis
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Exogeneous Variable
Cross-correlations

Observations:

• Several variables show strong cross-correlation with "GDP 
change".

• Most of the strongly cross corelated exogenous variables 
show maximum cross correlation at lag = 0.

NOTE: We only considered negative lags in this evaluation 
since we would not have access to future values while 
building the models
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VAR Modeling: Process
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Need for variable selection to reduce overfitting

1. Use VARselect and BIC to select the maximum lag to consider for various trend types
2. Fit the model with selected lag from VARselect
3. Remove insignificant elements

• Remove variables that are not significant at any lag
• Reduce the maximum lag to the maximum significant found in the fit.

4. Select trend type based on ASE performance

Model VARSelect
p

Sig. 
Lags

Significant Variables

VAR BIC Both 6 3 gdp_change, nfjobschg, cpichg, ppichg

VAR BIC None 6 6 nfjobschg, corpprofitchg

VAR BIC Trend 6 6 nfjobschg, corpprofitchg
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VAR Modeling: Model ID
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Batch Size = 50 observations (Use 4 years of data to predict the next 2 quarters)
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VAR Modeling : White Noise Evaluation
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The time plot of the model residuals 
appear to be generally consistent with 
white noise. 

A few autocorrelations are marginally 
significant, but this is with in the 95% 
confidence level.

“VAR BIC Both – R” Model
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MLP Modeling: Grid Search
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There are a large number of variables and hyperparameters that could affect the 
performance of an MLP model. 

We used a random search to find a good set of hyperparameters

Batch Size = 50 observations (Use 4 years of data to predict the next 2 quarters)

Best Hyperparameters
• Hidden Layers: 1
• Repetitions: 13
• Use Seasonality:  False
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MLP Modeling: Final Model
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## MLP fit with 1 hidden node and 13 repetitions.
## Univariate lags: (3)
## 17 regressors included.
## - Regressor 1 lags: (3)
## - Regressor 2 lags: (1,2,3)
## - Regressor 3 lags: (2)
## - Regressor 4 lags: (3)
## - Regressor 5 lags: (2)
## - Regressor 6 lags: (2)
## - Regressor 7 lags: (1,3)
## - Regressor 8 lags: (2)
## - Regressor 9 lags: (1,3,4)
## - Regressor 10 lags: (1,3)
## - Regressor 11 lags: (4)
## - Regressor 12 lags: (1,3)
## - Regressor 13 lags: (2)
## - Regressor 14 lags: (3,4)
## - Regressor 15 lags: (1,3,4)
## - Regressor 16 lags: (1)
## - Regressor 17 lags: (1)
## Forecast combined using the median operator.
## MSE: 2.0414.

1 Univariate Lag + 27 Exogenous Variable Lags
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VAR Modeling : White Noise Evaluation
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The time plot of the model residuals 
appear to be generally consistent with 
white noise. 

A few autocorrelations are marginally 
significant, but this is with in the 95% 
confidence level.
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Base Models: Comparison
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AR(2) shows the best performance
• Lowest mean ASE
• Tightest distribution of rolling window ASEs

All models show a large ASE value, occurring 
at the steep dip in the realization
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Modeling: Ensemble
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Three types of ensemble models were created
• Mean of the forecasts of the base models
• Median of the forecasts of the base models
• Linear regression combining the forecasts of the base models

Coefficient Estimate Std. Error Pr(>|t|)

(Intercept) 0.41118 0.74790 0.58374

AR(2) 0.31278 0.24443 0.20376

VAR BIC Both - R -0.09548 0.15598 0.54190

reps13_hd1_sdetFALSE 0.60804 0.22717 0.00875*
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Ensemble Modeling: Performance
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Base Models and Ensemble Models 
were used to make predictions on 
the 2 holdout (test) observations

Observations:

GLM ensemble provides lowest ASE

Median is slightly better on the first 
data point.

Median forecast lower values for 
second test data point. GDP Change Median Mean GLM

3.9 4.08603 4.235075 4.280197

3.8 2.910566 3.275486 3.323373

Ensemble Model Forecasts

GDP Change AR(2) VAR MLP
3.9 4.08603 3.766524 4.852671

3.8 4.415752 2.500141 2.910566

Base Model Forecasts

Model Test ASE

AR(2) 0.2069

VAR 0.8537

MLP 0.8493

Median 0.4128

Mean 0.1937

GLM 0.1859
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Conclusion
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• GDP data was very noisy and overall, models are not able to capture variance 
in this data.

• The univariate model AR(2) performs better than VAR and MLP models.

• Ensembles appear to improve forecasts, but further analysis should be 
performed.

• Addition of other exogenous variables with even stronger cross correlations 
may improve performance of multivariate models.
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Reproducible Research: Code for the complete analysis is available on GitHub

Youtube Video:
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